Part-III

PHYSICS Paper – II

(English Version)

Time: 3 Hours Max. Marks: 60

SECTION - A

(10x2=20)

Note: (i) Answer ALL questions.

(ii) Each question carries TWO marks.

(iii) ALL are very short answer type questions.

- 1. What is dispersion? Which colour gets relatively more dispersed?
- 2. A circular coil of radius r having N turns carries a current i. What is its magnetic moment?
- 3. Define magnetic inclination or angle of dip.
- 4. What do you understand by the 'magnetization' of a sample?
- 5. A transformer converts 200 V ac into 2000 V ac. Calculate the number of turns in the secondary if the primary has 10 turns.
- 6. If the wavelength of electromagnetic radiation is doubled, what happens to the energy of photon ?
- 7. Calculate the de Broglie wavelength of a ball of mass 0.12 kg moving with a speed of 20 m/s.
- 8. State Heisenberge's uncertainity principle
- 9. What are intrinsic and extrinsic semi conductors?
- 10. What are the basic block of a communication system?

SECTION -B

(6x4=24)

Note: (i) Answer ANY SIX questions.

- (ii) Each question carries FOUR marks.
- (iii) ALL are short answer type questions.
- 11. Define critical angle. Explain total internal reflection using a neat diagram.
- 12. Does the principle of conservation of energy holds for interference and diffraction phenomena? Explain briefly.
- 13. Derive the equation for the couple acting on a electric dipole in a uniform electric field.
- 14. Explain the behaviour of dielectrics in an external field.

- 15. Derive an expression for the magnetic dipolemoment of a revolving electron.
- 16. What are Eddy currents? Describe the ways in which Eddy currents are used to the advantage.
- 17. Explain the different types of spectral series of hydrogen spectra.
- 18. Define NAND and NOR gates. Give their truth tables.

SECTION -C (2x8=16)

Note: (i) Answer ANY TWO questions.

- (ii) Each question carries EIGHT marks.
- (iii) ALL are long answer type questions.

235

- 19. How are stationary waves formed in closed pipes? Explain the various modes of vibrations and obtain relations for their frequencies. A closed organ pipe 70 cm long is sounded. If the velocity of sound is 331 m/s. What is 04 the fundamental frequency of vibration of air column?
- 20. State the working principle of potentiometer. Explain with the help of circuit diagram how the potentiometer is used to determine the internal resistance of the given primary cell. A potentiometer wire of 5 m long and a potential difference of 6 V is maintained between its ends. Find the emf of a cell which balances against a length of 180 cm of the potentiometer wire.
- 21. Explain the principle and working of a nuclear reactor with the help of a labelled diagram.

If one microgram of is completely destroyed in an atom bomb, how much energy will be released?
